lunes, 7 de mayo de 2018

MEDIOS DE TRANSMISIÓN ( ALÁMBRICOS E INALÁMBRICOS )

Cable de par trenzado

Es un tipo de conexión que tiene dos conductores eléctricos aislados y entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes.
El cable de par trenzado consiste en ocho hilos de cobre aislados entre sí, trenzados de dos en dos que se entrelazan de forma helicoidal. Esto se hace porque dos alambres paralelos constituyen una antena simple. Cuando se trenzan los alambres, las ondas se cancelan, por lo que la interferencia producida por los mismos es reducida lo que permite una mejor transmisión de datos.




UTP


UTP, acrónimo inglés de Unshielded Twister Pair, o par trenzado sin apantallar, es un tipo de cable que se utiliza en las telecomunicaciones y redes informáticas. Se compone de un número heterogéneo de cables de cobre trenzados formando pares. Se diferencia de los pares trenzados apantallados y de pantalla global en que los pares individuales carecen de una protección adicional ante las interferencias. Cada cable de cobre está aislado, y los grupos de pares trenzados llevan un revestimiento que los mantiene unidos, pero carecen de cualquier otro tipo de aislamiento. El UTP se presenta en diferentes tipos y tamaños, y se utiliza principalmente en cables de nodos, lo que significa que circula desde una unidad central hasta cada componente individual de la red.


STP

STP significa Spanning Tree Protocol(Protocolo de árbol de expansión) y este se encarga de reconocer y administrar bucles en topologias de redes nacidos a función de la redundancia en la misma.

Su función es la de gestionar la presencia de bucles en topologías de red debido a la existencia de enlaces redundantes (necesarios en muchos casos para garantizar la disponibilidad de las conexiones). El protocolo permite a los dispositivos de interconexión activar o desactivar automáticamente los enlaces de conexión, de forma que se garantice que la topología está libre de bucles. STP es transparente a las estaciones de usuario.

Si la configuración de STP cambia, o si un segmento en la red redundante llega a ser inalcanzable, el algoritmo reconfigura los enlaces y restablece la conectividad, activando uno de los enlaces de reserva. Si el protocolo falla, es posible que ambas conexiones estén activas simultáneamente, lo que podrían dar lugar a un bucle de tráfico infinito en la LAN.







Cable cuaxial


El cable coaxial, coaxcable o coax,[1]​ creado en la década de 1930, es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado núcleo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante (también denominada camisa exterior).

El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.

Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.



Cable de fibra óptica


La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consistente en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser un láser o también diodo led.

Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de la radio y superiores a las de un cable convencional. Son el medio de transmisión por cable más avanzado, al ser inmune a las interferencias electromagnéticas, y también se utilizan para redes locales donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.







Ondas de radio

Las ondas de radio son un tipo de radiación electromagnética . Una onda de radio tiene una longitud de onda mayor que la luz visible . Las ondas de radio se usan extensamente en las comunicaciones.

Las ondas de radio tienen longitudes que van de tan sólo unos cuantos milímetros (décimas de pulgadas), y pueden llegar a ser tan extensas que alcanzan cientos de kilómetros (cientos de millas). En comparación, la luz visible tiene longitudes de onda en el rango de 400 a 700 nanómetros, aproximadamente 5 000 menos que la longitud de onda de las ondas de radio. Las ondas de radio oscilan en frecuencias entre unos cuantos kilohertz (kHz o miles de hertz) y unos cuantos terahertz (THz or 1012 hertz). La radiación "infrarroja lejana" , sigue las ondas de radio en el espectro electromagnético, los IR lejanos tienen un poco más de energía y menor longitud de onda que las de radio.





microondas terrestres

Un radioenlace terrestre o microondas terrestre provee conectividad entre dos sitios (estaciones terrenas) en línea de vista (Line-of-Sight, LOS) usando equipo de radio con frecuencias de portadora por encima de 1 GHz. La forma de onda emitida puede ser analógica (convencionalmente en FM) o digital.



Las principales aplicaciones de un sistema de microondas terrestre son las siguientes:

Telefonía básica (canales telefónicos)
Datos
Telegrafo/Telex/Facsímile
Canales de Televisión.
Video
Telefonía Celular (entre troncales)


Un sistema de microondas consiste de tres componentes principales: una antena con una corta y flexible guía de onda, una unidad externa de RF (Radio Frecuencia) y una unidad interna de RF. Las principales frecuencias utilizadas en microondas se encuentran alrededor de los 12 GHz, 18 y 23 Ghz, las cuales son capaces de conectar dos localidades entre 1 y 15 millas de distancia una de la otra. El equipo de microondas que opera entre 2 y 6 Ghz puede transmitir a distancias entre 20 y 30 millas





microondas por satélite


A diferencia de las microondas terrestres, las microondas satelitales lo que hacen básicamente, es retransmitir información, se usa como enlace entre dos o más transmisores / receptores terrestres, denominados estaciones base. El satélite funciona como un espejo sobre el cual la señal rebota, su principal función es la de amplificar la señal, corregirla y retransmitirla a una o más antenas ubicadas en la tierra. Los satélites geoestacionarios (es decir permanecen inmóviles para un observador ubicado en la tierra), operan en una serie de frecuencias llamadas transponders, es importante que los satélites se mantengan en una órbita geoestacionaria, porque de lo contrario estos perderían su alineación con respecto a las antenas ubicadas en la tierra. Como se mencionó anteriormente la transmisión satelital, puede ser usada para proporcionar una comunicación punto a punto entre dos antenas terrestres alejadas entre si, o para conectar una estación base transmisora con un conjunto de receptores terrestres. si dos satélites utilizan la misma banda de frecuencias y se encuentran lo suficientemente próximos, estos podrían interferirse mutuamente, por lo que es necesario que estén separados por lo menos 3 grados (desplazamiento angular medio desde la superficie terrestre), en la banda 6/4 GHz, y una separación de al menos 4 grados a 14/12 GHz, por tanto el número máximo de satélites posibles esta bastante limitado.
Las comunicaciones satelitales son una revolución tecnológica de igual magnitud que las fibras ópticas, entre las aplicaciones más importantes para los satélites tenemos: Difusión de televisión, transmisión telefónica a larga distancia y redes privadas entre otras. Debido a que los satélites por lo general son multidestino, su utilización es muy adecuada para distribución de televisión, por lo que están siendo ampliamente utilizadas en Estados Unidos y el resto del mundo. La PBS (Public Broadcasting Service), es una red que distribuye su programación casi exclusivamente mediante el uso de canales de satélite. Una de las aplicaciones más recientes que se le ha dado al uso de satélites se le denomina difusión directa vía satélite (DBS, Direct Broadcast Satellite), en la que la señal de vídeo se transmite directamente del satélite a los domicilios de los usuarios, esto se logra mediante la implantación de una antena de bajo costo, en el domicilio de cada usuario, logrando así que la cantidad de canales ofrecidos aumente notablemente El satélite se comporta como una estación repetidora que recoge la señal de algún transmisor en tierra y la retransmite difundiéndola entre una o varias estaciones terrestres receptoras, pudiéndo regenerar dicha señal o limitarse a repetirla. Las frecuencias ascendente y descendente son distintas: fdesc.< fasc. Para evitar interferencias entre satélites está normalizada una separación entre ellos de un mínimo de 4º (en la banda de la 14/12Ghz) o 3° (6/4 GHZ)



infrarojos

Las redes por infrarrojos permiten la comunicación entre dos nodos, y para ello utilizan una serie (por lo menos un par) de ledes Esa es su principal desventaja, a diferencia de otros medios de transmisión inalámbricos (bluetooth, etcétera).



ondas de luz

Las ondas de radio son un tipo de radiación electromagnética[1]​ con longitudes de onda en el espectro electromagnético más largo que la luz infrarroja.

Las ondas de radio se propagan desde frecuencias de 10 THz hasta 10 kHz, cuyas correspondientes longitudes de onda son desde los 100 micrómetros (0.0039 pulgadas) hasta los 100 kilómetros (62 millas).




Sistemas Operativos de Redes

SISTEMAS OPERATIVOS DE REDES 


Un sistema operativo de red, también llamado N.O.S (del inglés, Network Operating System), es un software que permite la interconexión de ordenadores para tener el poder de acceder a los servicios y recursos, hardware y software, creando redes de computadoras. Al igual que un equipo no puede trabajar sin un sistema operativo, una red de equipos no puede funcionar sin un sistema operativo de red. Consiste en un software que posibilita la comunicación de un sistema informático con otros equipos en el ámbito de una red.


Tipos de sistemas operativos


Sistemas Operativos Novell

Novell Netware es un sistema operativo de red, una de las plataformas de servicio para ofrecer acceso a la red y los recursos de información, sobre todo en cuanto a servidores de archivos. Fue retirado en 1995 por Ray Noorda, junto al escaso marketing de Novell hicieron que el producto perdiera mercado, aunque no vigencia por lo que se ha anunciado soporte sobre este sistema operativo hasta el año 2015.[cita requerida]


Netware fue impulsado por Novell bajo la presidencia (1983 a 1995) de Ray Noorda, quién falleció en octubre de 2006, y estaba considerado como uno de los primeros ejecutivos de la alta tecnología que se enfrentó con éxito al dominio de Microsoft en las computadoras de sobremesa. Bajo su dirección, Novell creció de 17 a 12 000 empleados y se convirtió en una de las compañías tecnológicas más importantes que aparecieron en la década de 1980.

Ray Noorda, "Ayudó a la extensión de la computadora personal construyendo Netware, un exitoso sistema para compartir archivos, que ahora es el modelo de las redes de área local", señaló el presidente de Dell, Michael Dell.

Además del servidor de red propiamente dicho, se comercializaron productos adicionales: Netware for SAA (Conectividad con MainFrames), Netware Connect (Conexión de clientes vía módem), MPR MultiProtocol Router (Interconexión de redes), etc.


Sistemas Operativos de Microsoft 

La compañía fue fundada en 1975 por William H. Gates III y Paul Allen. Ambos se habían conocido durante su época de estudiantes por su afición común a programar con la computadora PDP-10 de Digital Equipment Corporation. Pocos han oído hablar de las microcomputadoras, pero dos jóvenes apasionados de la informática, Bill Gates y Paul Allen, perciben que la informática personal es el camino hacia el futuro.

Su idea es que en cada hogar haya un escritorio con un equipo personal. Ese mismo año Popular Electronics dedicó su portada y un artículo al Altair 8800, la primera computadora personal. Ese artículo animo a Gates y Allen a  desarrollar un la primera versión del lenguaje Basic para este equipo. El lenguaje fue un éxito y múltiples empresas compraron las licencias .Con el dinero ganado fundaron la base  en Albuquerque, Nuevo México.

No tardaron en llegar nuevas versiones de Basic, un segundo producto llamado Microsoft Fortran, otro lenguaje de programación, y con todo ello pronto sacó versiones del lenguaje Basic para los microprocesadores  8080 y 8086.


Sistemas Operativos Apple 

Es el sistema operativo del Apple Watch. Está basado en el sistema operativo iOS y, de hecho, muchas de las prestaciones son similares a las presentes en iOS.1 Fue lanzado por primera vez el 24 de abril de 2015, junto con el Apple Watch.

Watch OS
tv OS
tv OS es el sistema operativo que dará vida al nuevo Apple TV.

La nueva plataforma está construida de la misma forma que iOS y OS X, es por ello que los usuarios podrán seguir utilizando Xcode para desarrollar las aplicaciones.

tvOS también cuentan con unas herramientas, específicamente Metal, que permiten que los desarrolladores puedan crear aplicaciones con gráficos demandantes y efectos visuales complejos.
Sistemas Operativos UNIX
UNIX es un sistema operativo, es decir, es una colección de programas que ejecutan otros programas en una computadora. UNIX nació en los Laboratorios Bell de AT&T en 1969, desarrollado por Ken Thompson y Dennis Ritchie (también creador del lenguaje de programación C).

¿Qué es TSP/IP?

TCP/IP son las siglas de Protocolo de Control de Transmisión/Protocolo de Internet (en inglés Transmission Control Protocol/Internet Protocol), un sistema de protocolos que hacen posibles servicios Telnet, FTP, E-mail, y otros entre ordenadores que no pertenecen a la misma red.

El Protocolo de Control de Transmisión (TCP) permite a dos anfitriones establecer una conexión e intercambiar datos. El TCP garantiza la entrega de datos, es decir, que los datos no se pierdan durante la transmisión y también garantiza que los paquetes sean entregados en el mismo orden en el cual fueron enviados.
                                                          
El Protocolo de Internet (IP) utiliza direcciones que son series de cuatro números ocetetos (byte) con un formato de punto decimal, por ejemplo: 69.5.163.59

¿Qué es protocolo de transferencia?

El Protocolo de transferencia de archivos (en inglés File Transfer Protocol o FTP), es un protocolo de red para la transferencia de archivos entre sistemas conectados a una red TCP (Transmission Control Protocol), basado en la arquitectura cliente-servidor. Desde un equipo cliente se puede conectar a un servidor para descargar archivos desde él o para enviarle archivos, independientemente del sistema operativo utilizado en cada equipo.
                                              
El servicio FTP es ofrecido por la capa de aplicación del modelo de capas de red TCP/IP al usuario, utilizando normalmente el puerto de red 20 y el 21. Un problema básico de FTP es que está pensado para ofrecer la máxima velocidad en la conexión, pero no la máxima seguridad, ya que todo el intercambio de información, desde el login y password del usuario en el servidor hasta la transferencia de cualquier archivo, se realiza en texto plano sin ningún tipo de cifrado, con lo que un posible atacante puede capturar este tráfico, acceder al servidor y/o apropiarse de los archivos transferidos.



¿Qué es la dirección IP?
Una dirección IP es un número que identifica, de manera lógica y jerárquica, a una Interfaz en red (elemento de comunicación/conexión) de un dispositivo (computadora, tableta, portátil, smartphone) que utilice el protocolo IP o (Internet Protocol), que corresponde al nivel de red del modelo TCP/IP. La dirección IP no debe confundirse con la dirección MAC, que es un identificador de 48 bits para identificar de forma única la tarjeta de red y no depende del protocolo de conexión utilizando la red.

La dirección IP puede cambiar muy a menudo por cambios en la red o porque el dispositivo encargado dentro de la red de asignar las direcciones IP decida asignar otra IP (por ejemplo, con el protocolo DHCP). A esta forma de asignación de dirección IP se le denomina también dirección IP dinámica (normalmente abreviado como IP dinámica). Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática). Esta no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.

 Los dispositivos se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, para las personas es más fácil recordar un nombre de dominio que los números de la dirección IP. Los servidores de nombres de dominio DNS, "traducen" el nombre de dominio en una dirección IP. Si la dirección IP dinámica cambia, es suficiente actualizar la información en el servidor DNS. El resto de las personas seguirán accediendo al dispositivo por el nombre de dominio.



¿Cuál es el protocolo IPX?

Internetwork Packet Exchange o IPX (en español "intercambio de paquetes interred") es un antiguo protocolo de comunicaciones de redes NetWare (del fabricante Novell) utilizado para transferir datos de un nodo a otro de la red mediante paquetes de datos llamados datagramas.

Los paquetes en IPX incluyen direcciones de redes, permitiendo enviar datos de una red a otra y, en consecuencia, interconectar ordenadores de redes diferentes. Algún paquete en IPX puede perderse cuando cruza redes, por lo que IPX no garantiza la entrega de un mensaje completo. La aplicación tiene que proveer ese control o utilizar el protocolo SPX de Novell. IPX provee servicios en los estratos 3 y 4 del modelo OSI (capas de red y de transporte respectivamente).